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DEVELOPMENT OF AN ADAPTIVE BOUNDARY-FITTED COORDINATE CODE

FOR USE IN COASTAL AND ESTUARINE AREAS

PART I: INTRODUCTIO

1. The mathematical modeling of the hydrodynamics of a body of water

plus the transport and dispersion of a constituent within that body involves

the solution of a set of partial differential equations expressing the conser-

vatlon of mass, momentum, and energy of the flow field along with a transport

equation for the constituent. These equations involve derivatives with re-

spect to time as well as three spatial dimensions. However, a simplification

that is often made in treating relatively shallow bodies of water which are

well mixed over the depth is to vertically average the three-dimensional (3-D)

equations to yield a two-dimensional (2-D) set for nearly horizontal flows.

Numerical Techniques

2. Since the governing equations are nonlinear, analytic solutions in

general cannot be found and one is forced to resort to numerical techniques to

obtain solutions. The two most common such techniques are the finite differ-

ence method (FDM) and the finite element method (FEM). There are, of course,

both advantages and disadvantages to each of these approaches.

3. Perhaps the most often quoted advantage of the FEM is that with this

approach, physical boundaries coincide with computational net points. There-

fore the modeling of flow within an irregular domain can be more accurately

handled than with the older rectangular FDM wherein the approach is to con-

struct a rectangular grid over the domain, which forces the boundaries to be

represented in a "stair-stepped" fashion. However, a disadvantage of many

K finite element models is the excessive computational time required c npare,.

with typical finite difference models having the same number of mesh points.

As discussed by Johnson, Thompson, and Baker "1984) this occurs because of the

manner in which the system of resulting algebraic equations i: usul ly solve i

in finite element models. An additional disadvantang, is thit the FFM is mIr,..

cumbersome to code into a computer model tian the FDM. This can be "

not only during the development of the model but also can incro,3e tic :evl

of effort required during later model modifications.

3 ""''1
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Boundary-Fitted Coordinates Concept

4. Accepting that the FDM possesses an advantage in simplicity and per-

haps computational costs, a logical question is whether or not one can develop

-. ways to circumvent the major disadvantage of having to represent irregular

". boundaries in a stair-stepped fashion. One method is to make computations on . -.

curvilinear grids so that one of the curvilinear coordinates always follows a

boundary. Vertically averaged hydrodynamic models developed by Johnson (1980)

-and Sheng and Hirsh (1984) are examples of models employing a general non-

orthogonal curvilinear grid. Through coordinate transformations, irregular

boundaries and variable grid spacing can be more accurately handled while

still making use of the simplicity of finite differences to obtain solutions.

Since the boundary-fitted coordinate system has a coordinate line coincident

with ill boundaries, all boundary conditions can be expressed at grid points;

-ind normal derivatives can be represented using only finite differences be-

tween grid points on coordinate lines. No interpolation is needed, even

though the coordinate system is not orthogonal at the boundary. A general

discussion is given by Thompson, Warsi, and Mastin (1985).

5. To enable efficient flow-transport modeling on boundary-fitted

grids, a numerical generator is needed to provide the (xy) location of the

curvilinear coordinates. One of the earliest grid generators was developed by

Thompson, Thames, and Mastin (1977) with a later version callcd WESCOR pro-

vi 1,.,i bj Th orpo i 1983).

WESCOR

n. The WESCOR code generates a boundary-conforming curvilinear coor-

Jinate system for a general 2-D region with boundaries of arbitrary shape and

vith boundary intrusions and internal obstacles, such as islands, arbitrary in

h m number. The grid is generated from the numerical solition of a set

of elliptic partial differential equations by accelerated point Gausu-Setdel-

Fhfl:3oe e.Vat ions are written in the transformed space, which is in-

1 ty ,',an 1ar with - 2i r' r-i I. All computations, both to generate

the j' ani Yue t i '.,) : Iv,- ; rtia] differentia.l equattor: for p!iysrial

problems on the go id, Pr ' li thi .',in.SforMOm d 'pace, s90 thit ill boundlary

• 'K - °
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conditions can be represented on grid lines without interpolation. This

allows codes to be constructed that treat completely arbitrary regions with

rectangular DO loops, with the boundary shape specified simply by an input

boundary point distribution. It is thus possible to treat arbitrary boundary

shapes naturally with FDM's, although such grids can also serve in finite ele-

ment solutions.

8. The WESCOR code incorporates an automatic evaluation of two control

functions in the elliptic generation system from the specified boundary point

distribution that serves to make the grid lines in the field follow the gen-

eral relative distribution of points on the boundaries. The code also allows

for this automatic grid line control to be augmented by input to concentrate

grid lines near other grid lines and/or points.

Need for a New Grid Generator

9. As noted, much of the numerical modeling of free-surface hydro-

dynamics involves the depth-averaged computation of circulation patterns in

estuaries and coastal areas to provide input to numerical transport-diffusion

models of sediment and water quality parameters. In many of these problems a

major concern is the representation of winding navigation channels on the

numerical grid. Existing boundary-fitted grid generation codes, e.g. WESCOR,

cannot generate adequate grids for such problems, thus a grid generation code

that forces grid points to cluster along an internal navigation channel is

required before finite difference models based upon boundary-fitted coordi-

nates can be efficiently applied to coastal and estuarine areas. In a recent

study by Johnson, Thompson, and Baker (1984) it was recommended that an

estuarine/coastal fixed-grid generator model based upon adaptive grid tech-

niques be developed.

10. To accomplish this, the 2-D numerical grid generation code WESCOR

has been extended to include adaption of the grid to concentrate lines ac-

cording to a depth distribution. The present extension automatically con-

centrates grid lines according to increasing depth. Two adaption mechanisms

are included, one based on the variational formulation of Brackbill and

Saltzman (1982) that uses the calculus of variations to produce a system of

partial differential equations with competitive enhancement of grid conoen-

tration, smoothness, and orthogonality, and the other bhsed on a simple

5



extension of the control functions in the original elliptic generation in

WESCOR.

11. With either adaptive mechanism the code first generates a grid

using the original WESCOR system without regard to depths. The input depth

distribution, which is specified by an arbitrary arrangement of points with no

order or pattern, is then interpolated onto this initial grid. No further

interpolation is needed as the adaptive grid generation system is solved for a

grid that is concentrated according to increasing depth.

12. In the following sections, discussion of the theory of the adaption

mechanism, the interpolation procedures, input required, and finally an exam-

ple application are presented. User instructions and sample job streams are .-

presented in the appendices.

-?I



PART II: ADAPTIVE GRIDS

13. The generation of adaptive grids is discussed in detail by

Thompson, Warsi, and Mastin (1985) and a recent survey is given by Thompson

(1985). A discussion of potential applications in numerical hydrodynamic

modeling is given by Johnson, Thompson, and Baker (1984). Briefly, an adap-

tive grid senses gradients of some physical quantity and adjusts itself auto-

matically to better resolve those gradients, i.e., to concentrate lines in the

high gradient regions. (The adaption here is through movement of the grid

points, not the addition of more points.)

14. With the time derivatives at fixed values of the physical coordi-

nates transformed to time derivatives taken at fixed values of the curvilinear

coordinates, no interpolation is requireL when the adaptive grid moves. The

time derivative transforms as follows:

( u au au
n x,y

where x,y are the components of the grid speed. The computation thus can be

done on a fixed grid in the transformed space, without need of interpolation,

even though the grid points are in motion in physical space. The influence of

the motion of the grid points is registered through the grid speed appearing

in the transformed time derivative.

15. Several considerations are involved here, some of which are con-

flicting. The points must concentrate, and yet no region can be allowed to

become devoid of points. The distribution also must retain a sufficient

degree of smoothness, and the grid must not become too skewed, else the trun-

cation error of equations solved on the grid will be increased. This means

that points must not move independently, but rather each point must somehow 5e

coupled at least to its neighbors. Also, the grid points must not move too

far or too fast, else oscillations may occur.

Variational Formulation

16. Thus, on the one hand, there is a need to force grid points to con-

centrate near large solution gradients; on the other hand, there is a need to

generate grids that are relatively smooth and do not devite too much from

47
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being orthogonal. The calculus of variations is well suited to handle such

problems since integrals over the grid can be written that measure the three

• .desired features discussed above, namely, (a) a concentration of grid points

near large solution gradients, (b) a smooth distribution of grid points, and

(c) a relatively orthogonal grid. The variational formulation of adaptive

grids is discussed in detail by Brackbill and Saltzman (1982) and by Thompson,

* Warsi, and Mastin (1985). A brief discussion follows.

17. The area of a computational cell in two dimensions (the volume in

three dimensions) is given by the Jacobian, J , of the mapping:

J~xy x y (2)J fYl xnY ( ),,..
n T1n

Therefore, if the integral

= fw(xy) J dA

which is a measure of the weighted variation of the computational cell size

over the grid, is minimized for some weight function w(x,y) , which is ... ,

related to the solution gradient, a concentration of grid points in high

gradient regions can be obtained. In other words, where the weight function

w(x,y) becomes large the cell size becomes small, and where w(x,y) becomes

small the size of the computational cell becomes large.

18. Likewise, the smoothness of the grid is measured by the integral

= j*V ) 2+ (\7I) ]A (14)
s f

with the orthogonality measured by

2
I0 = (V7 • V1) 2  J 3  dA (5) .

D

where the j3 is added to cause orthogonality to be emphasized more in larger

cells. Note that V - Vn = 0 for an orthogonal grid. Therefore an adaptive

grid generator can be developed by minlrmizinF a sum of' the three integrals

given in Equations 3-5, i.e.,

"-I = A I +A + ), I ,W
.) S 0 W

.o. .. . .•.. •* * *-.. . * . .



19. From the above expressions for Is , Io  and Iw  we have the

dimensional relations

I N L 2  I N4 L- L 2  I W L! L2
s L2 L 4 NN6 N 2

where

N = characteristic number of points

L = characteristic length

W = average weight function over the field

W = f w(x,y) dA (7)
D D

Thus, for Equation 6 to be dimensionally correct, we take

(H) 4  N) 4 1 -'-

X, and X X, (N

where A' and A' are positive constants. The characteristic lerigtn and
0 w

number of points might logically be taken as the square roots of the total

area and the total number of points in the field, respectively.

20. Obviously, by selecting appropriate values of X X and '

grids that emphasize smoothness, concentration of grid points, or orthog-

onality can be generated. The variational formulation thus provides a CoM-

petitive enhancement of these three grid characteristics. A note of caution

concerning orthogonality is perhaps needed. Purely orthogonal grids cannot be

generated when prescribing the location of boundary points, even if the con-

diti3n V • Vn = 0 is enforced. Since derivatives of' the coor'dindtes have

to be specified to satisfy orthogonality at the boundaries, specifying tie

location of the points overspecifies the problem with ;,;nd-oi,1,r partia,

differential equations as the grid generation system. Tlerefore, in order t'

generate a strictly orthogonal grid, the boundary poinl.s must ue i4lowed to

move on the boundary. In many cases this constitutes a major, restriction on

the generation of a useful grid. Therefore large val ies of ' compared jiti

values of A' and A' will only enniance trie orthog nality of' tue grid. In ¢ --
3w

general tie grid is still nonorthogonal , and all terms in the gove;rning trns-- *

formed partial differential equations must be retained.

21. For a 2-D adaptive grid generat )r, pdrtiil a] i!' rerential e quit.i

J~J,

4.•..

* .4-.. .P~ d~. V*-'~ - -.- - -"



for the solution for the physical coordinates (x,y) are desired. These are

obtained through the calculus of variations applied to the minimization of the

sum of integrals in Equation 6. In general, if we wish to find functions

¢i(x,y) that are differentiable on (x,y) and satisfy fixed constraints on

the boundary of the domain that minimize some integral functional

I x f €i dx dy (8)

=JfI a,,~ x 3y
D

the calculus of variations gives that ¢i(x,y) are the solutions of the

Euler-Lagrange equations

V _(___) -- -0 (9)

22. The 2-D Euler-Lagrange equations for the minimization of the sum of

integrals in Equation 6 are given by Brackbill and Saltzman (1982) as

+ bx b ay + a w +w a-.b n + 3nn 1 a2YCq a3ynn T-w x
(10)

ax +ax a +,cyY - w
1 U 2,n a 3 xnq + cy U c 2 YEn + n 2 w y

For completeness, the coefficients are reproduced from the cited paper and

presented below:

a. =Aa + X wa + X a
s s. w w 00

b Xb + X wb + X b i =1,2,3
i ssi w w oo.

c c + X WC + X cOI ss. W W. O O. :
1 1 1- - . .

asl -A ; bl Bc ; C 1 = Cc.

a 2A6; b -2BB c =12C"
3 2  s2 s2

a -A-Y; U BY; C C,
33 33 s3

% .



where

2 2 2 2 .
xy Xy , B y y n

and

2 2 2 2

ax y bx yy x y

x n nn W1 n ___y

aw2 x yn +Xn Y w2 2yyn cw2 2xxn

2 2
a =xy y , C =

w3 w3 w3

a "0 1  = X Y = x2 bOwl = 2 n-''01"....

ao2 = x, y T)+ x n , b o2 2(2x x + y y )l , o2 2(x x n 2y y n

~n n 2 ~ n o21::::1:'.

2 2

aw = xy +x , b w2x , -2y w 2~

a03 x -y bo3 = y O3 y C

Equation 10 constitutes the variational adaptive grid generator used in the

| P ~. %°-..

present code.

Control Function Formulation

2 2 K'.' .'.

23. The elliptic generation system used in the WESCOR code is as

follows:

ax b2ax 2YX + CYPX + YQx 0

axy -2By T + Yy~ n n aPy + YQy T 0

where now the coeficients are redefined as *

2 2
I=x y

Ti Ti

Equtin 0 ontitte te aratina aapiv grd enraoruse i te .1-1



8 x x n Y

2 2 4*

=xx + Y{Y

Here P and Q are the control functions that serve to concentrate the grid r

lines.

24. In one dimension, with y= x = 0 , these equations reduce to

x + Px =0

y + Qy =0
nfl -

Now if the product of a weight function w and the grid spacing is equally

distributed over the grid we have, in one dimension,

wx = constant

or

wx + w x 0

Then by analogy we make the connection

P X" xA_-w .-- x w

Generalizing we have

w wp = = n(12)
w w

Equation 11, with the control functions evaluated from Equation 12, consti-

tutes the adaptive generation system based on the original elliptic system of
• .. °

the WESCOR code.

1,: .% .

* . -.

°.° %,. ,

°° ~~12 °• °.
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PART III: DEPTH INTERPOLATION

25. A basic input to depth-averaged hydrodynamic models is the water

depth associated with each computational cell. These depths, relative to some
..%",..l

datum, are normally obtained from National Oceanic and Atmospheric Administra-

tion (NOAA) charts. An efficient grid generator that forces grid points to

cluster in navigation channels through adaption to the water depth requires

the interpolation of the input depth field determined from the NOAA charts.

The number of input depth points and their distribution should be arbitrary.

Various interpolation schemes that have been incorporated are discussed below.

Taylor Series Expansion About Nearest Depth Point

26. With (x,y) the nearest depth point to a grid point (xy), the depth

f(x,y) at the grid point is given by a Taylor series expansion about the

depth point as follows:

f(x,y) =f(x,y) + f (X X) + f (y y ) f (x X x)

+ f y(y - ) + fx X) (y y) +

yy x...

where all derivatives are evaluated at the depth point.

27. These derivatives are determined by Taylor series expansions of the

given depths at depth points neighboring the one in question about the latter

(cf. Figure 1). Thus if the five nearest depth points to the depth point

(x,y) are (xi,y i ) i = 1,2,3,4,5 , we then have

f. = f(xy) f fx. - x) + fyY - Y)
1 x 1 y

1 -2 - 2
+ f f xyx2xx i x yy( - y-

+ f x . - x) (y. - Y) i 1,2,3,4,5 (14)
xy11

Since the left sides here are known as values at depth points, this system ."-

constitutes five equations for the five derivatives at the depth point (x,y).

If fewer derivatives are Included in the expansion about the depth point then

13
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the number of equations in the system (14) is reduced accordingly. For

example, for a linear, expansion, only f. and fy are used in Equation 13,

so only two neighboring depth points are used and the system (14) consists of

two equations only. The code provides for the use of two (fxf y), three

(fxfypfy), four (fxfyofxxyfyy), and all five derivatives.

28. This interpolation is implemented by first sweeping all the depth

points, at each of which the appropriate numbering of neighboring points is

located and the required derivatives are evaluated by the solution of the

system (14). Then the grid points are swept, determining the nearest depth

point at each and dcbermining the depth from Equation 13.

Interpolation Within Triangles or Quadrilaterals of Depth Points

29. If the depth at a grid point (x,y) is written as the linear

function

f(x,y) = a + bx cy (15)

then the coefficients a , b , and c can be determined by evaluating Equa-

tion 15 at three depth points surrounding the grid point in question (cf. El
Figure 2). Thus we have the system

f1 = a + bx1 + cy i  i = 1,2,3 (16)

of three equations for the three coefficients.

30. Similarly, with the depth given by the product of linear functions

in each coordinate we have

f(x,y) (a + bx) (c + dy)

- ac + bcx + ady + bdxy

Redefining the coefficients, this can be written as

f(x,y) a ,' bx + cy + dxy (17)

and now evaluation at four surrounding points gives the system



F . v ir V_ -V W Q. %7 K" :7 -- R- V 7 *1_

fi= a + bx + cvi + dxiYi i = 1,2,3,4 (18)

31. Implementation proceeds by sweeping the grid points, at each of

w1-ich the three or four nearest surrounding depth points are located and the

coefficients are determined by solution of the system (16) or (18). Then the

depth at the grid point is evaluated from Equation 15 or Equation 17.

Inverse-Power Interpolation Among Depth Points

32. Here the depth at a grid point (x,y) is written in terms of inverse

powers of the distance to each point of a surrounding group of nearest depth

points (cf. Figure 3) as follows: .

3 f~x.,Y.

1=1 d.

f(xy) = d.  (19) e. -

i=1 d
1

where di = _ xi) 2 + (y - 2 is the distance from the grid point in

question to the depth point (xi,y i ) and m is a specified power, one or

greater. The code provides for two, three, four, five, or all depth points to

be used in Equation 19. The exponent m is an input quantity, higher values

of this exponent giving sharper variations in depth.

Location of Neighboring Depth Points -
. . .. "." '. "4

33. The accuracy of the interpolation is enhanced if the group of depth

points used generally surrounds the point in question. This requires a some-

what different selection procedure for each succeeding point cho:sen as de-

scribed below. Each selected point is, of course, excluded from the selection

procedure for the succeeding points.

First point

34. The first depth point selected is simply the nearest one to the

point in question: (The notation in all the following figures is that the

vector r points from point i to point j with the point about whi, h

the group is being formed designated as point 0 .)

.Z -, ... .7.

. 4...........
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Second point

35. The second depth point selected is required to form an obtuse angle

with the first point at the point in question. The closest point satisfying

this requirement is the one chosen:

02r
<.01

This is accomplished by selecting point 2 as the closest point having

r 1 02 < 0 (20)

Third point

36. The third depth point chosen is the nearest one lying in the shaded

zone in the figure below, i.e., between the backward extensions of the vectors

to the first two points.

aa1
- 02

e i.gnated a:- a I etc., theW t .t * * .t * 1 0 i . -t .+.

. . . . . . . . . . . . . . . . . . . . . . . . . .
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unit vector a along the bisector of the angle between the first two points 
%

is given by . i

ao1 a 0 2
a = 021

Then the third point will lie in the shaded region if

a (-a) > (-a2 (-a)
-03 - 02(-a:)

which, upon substitution for a , becomes

+~ a a a *a <-01 -02 -02 -03 -03 -ol 0

But

(a +3) 2  .2(a
-01 a02 -03 -01 -02 -02 -03 -03 -01

so that the requirement becomes

1 2 "-
1 + [(aO + a02 a03 - < 0

or finally simply that

1a01 + a02 + a 1 (1).

37. The nearest point satisfying this criterion is, of course, chosen.

Selection of the third point in this manner assures that 'he p,)int about which

the group is formed will lie inside a triangle formed by the three depth

points chosen.

Fourth point

38. The fourth point selected is required to lie outside tne znes .

formed by extending the sides of the triangle of points alrealy chosen: "a.-"

17
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a Jb

aa

a 13

=3

=4

In the diagram here, a is the unit vector on the bisector of the angle be-

tween the vector from point 1 to points 2 and 3. Thus

- 1 a 13I

The fourth point will lie in the region between the extensions of the vectors

a and a a hwi-12 -13 ,a hwi

a *a~a *
14-13

Following a development analogous to that given ah(-v, in ronn,-Miron with the

* third point, this becomes

1 4 12 - 13I1 (22)

This, however, does not ensure that the fourth point is Outside the triangle

* formed by the first three points. Therefore we require in addition that

i. '

r r at

*~ 1 0,~,* .

Col ~ 0 2 3q.



so that

a14 t a2 3 q + r12

Crossing a2 3  into both sides to eliminate q , we have

k •(a23 12)
t~k(t k • (a2 x a1 )7[2i]

- -23 -114~

Point 4 then will lie outside the triangle if

k *(a x
-23 -'1 2

Ir141 > k (a (23)
- -23 (23)

The inequalities (22) and (23) apply for a point outside the triangle and be-

tween the extensions of the sides with a vertex at point 1. Generalizing to

the other two vertices, the fourth point is selected as the nearest point

satisfying conditions (24) and (25) below for any of the three values of i

i.e., for any vertex of the triangle:

Iai4 aim -inl a (24)

k (amn x r.)
~ m im .(25 )

Iri4 > k •(amn x a i4) (25)

i 1,2,3 (i,m,n) cyclic

Selection of the fourth point in this manner guarantees that the four points

form a convex quadrilateral about the point in question.

Fifth point

39. Here again the nearest point is chosen, without regard to other con-

siderations. This simple choice of the fifth point does not necessarily pro-

duce a convex polygon, but the extra complications involved in doing so was not

considered justified in view of the lack of real incentive to use five points.

19
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Additional groups

40. In some cases with fewer depth points it is possible that the

interpolation is inaccurate because the particular group of points selected

gives a false impression of very large gradients. Therefore provision is made

for selecting more than one group of points and basing the interpolation on -

the group giving the smallest gradients. The code also automatically replaces

points in any group leading to a zero determinant in the solution of the

linear system for the derivativ s or coefficients.

. . . .. . . . . . . I



PART IV: GENERATION PROCEDURE

Iterative Solution

41. The numerical solution of Equation 10 or Equation 11 is accom-

plished in finite difference form by replacing all derivatives with second- f- [

order central difference expressions. The resulting difference equations are

nonlinear since the coefficients of the second derivatives involve the first

derivatives. This system of difference equations is solved by accelerated

point Gauss-Seidel iteration. In both the first and second derivatives, all

off-center values above, or to the right of, the point of evaluation are

evaluated at the previous iteration, while those below, or to the left, are

evaluated at the present iteration. With the central values in the second

derivatives factored together, we then have a 2x2 system for x and y at

the point in the case of Equation 10 and an uncoupled system with Equation 11.

The field is swept repetitively until convergence to some prescribed tolerance.

Weight Function

42. The components of the gradient of the weight function are given by

w = (w y - W )x n- -n/
(26)

W (WX - w x
y J n, ,n

and the values of the weight function at each point are continually updated

during the iteration according to Equation 1. Since the weight function is

not time-dependent on the physical field in the present application we have

=0
x, y 2.'

so that Equation 1 reduces to

G x w yw
0 x y

21
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Then using first-order forward difference expressions for the time derivatives .

and caniceling the At we have

Aw = w AX + w Ay (27) "x y '

which could also have been obtained, of course, by direct application of the

chain rule. Equation 27 then serves to determine the change in w at each

point in terms of the change in x and y at each iteration.

43. The code first generates a grid from the original WESCOR system

without adaption. Depth values are then interpolated onto this initial grid

from the set of depth points. The depth points may be input in any order and

without any pattern. The code automatically adds the points on the outer

boundary to the input set of depth points, with a depth of zero for the for-

mer, and eliminates duplicated points. It is this augmented set that is used

in the interpolation. These zero depths on the outer boundary can be over-

ridden by including the outer points that are to have nonzero depth in the

input set of depth points. Several forms of interpolation are provided as

discussed in PARF III. After the interpolation the depths can be smoothed on

the initial grid points.

44. The smoothed interpolated values of the depth on the initial grid

then are used as the weight function in the generation system, the values of

the depth being continually updated at each point from Equation 13 as the grid

moves without further interpolation.

Input

15. The depth-adaptive code, called WESCORA, has the same structure as

the earlier WESCOR code capable of generating 2-D grids on arbitrary regions

with interior obstacles. The input is the same as that described for the

WESCOR code by Thompson (1983), with a few additions described below. Com-

plete input instructions for WESCORA are given in Appendix A.

46. The total number of depth points to be read in for grid adaption is

input as NDEP, and a flag NDOP controls the printing of the depth points. (If

NDEP=O the code runs the non'daptive system only.) The flag NDEPF causes the

depth points to be read from file 12 instead of from the input. The type of

interpolation is spci VdLy NINP as f',l'ows:

J. P
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NINP = 0 inverse-power interpolation using all points
-2 : inverse-power interpolation using 2 points

-3 inverse-power interpolation using 3 points
-4 inverse-power interpolation using 4 points

-5 : inverse-power interpolation using 5 points

-5 inveorseroer interpolation using 5 points
2 Taylor series interpolation using 2 points

3 Taylor series interpolation using 3 points

5I Taylor series interpolation using 4 points
5 : Taylor series interpgolation using 5 points ..<

13 : Bilinear interpolation using 3 points

14 Bilinear interpolation using 4 points -.

If adjusted depths are used for the adaption, then an additional depth file

containing actual depths is input to provide real depths at the center of each

computational cell. The flag LDEPF causes the second set of depth points to

be read from file 16 instead of from the input, with LDEP points contained in

the file. The interpolation of the actual depth field onto the final adaptive

grid can be a different type from that employed in the grid generation. The

types available are the same as those described above. The use of an adjusted

depth field is discussed in more detail in PART V.

47. The parameter NCOM specifies the number of groups of points to be

considered in the interpolation (the default is one group). The parameter

NTES suppresses the requirement that the points selected form a convex polygon

about the point in question, and the parameter NSMO suppresses the smoothing

of the depths after interpolation onto the grid points.

48. The three parameters controlling the relative emphasis on concen-

tration, smoothness, and orthogonality are input as WFACI, SFAC, and OFACI,

respectively, the nominal ranges being 0-1. (A negative value of WFACI will

cause the control function adaption, rather than the variational adaption, to
be used, with the magnitude in the nominal range. In this case the other two

parameters are Irrelevant.)

49. The depth points used in the adaption are read in either from the

Input or from file 12, immediately after the boundary points are read, with

the Cartesian coordinates of the point in columns 0-10 and 11-20, and the

depths in columns 21-30. The depth points may be in any order, and duplica-

tions will be automatically eliminated by the code. If a second set of depth

23



points is input, they are read in either from the input or from file 16. The

format is the same as noted above.

50. An additional feature has also been added allowing the use of

Neumann boundary conditions to produce orthogonality on straight boundaries if

desired. This feature is activated by NEUBOD for slab sides and by NEUOUT for ..- 'o.

the outer boundary.

.*J.
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PART V: CHESAPEAKE BAY APPLICATION

51. For demonstration purposes, the adaptive grid generation code

WESCORA has been applied to Chesapeake Bay (Figure 4).

Chesapeake Bay

52. Chesapeake Bay, located on the east coast of the United States, is

one of the largest estuaries in the world. The main bay extends approximately

190 miles north from the ocean entrance in the Commonwealth of Virginia, be-

tween Cape Henry and Cape Charles, to the Susquehanna River in the State of

Maryland. The average depth of the bay is about 28 ft, although a natural

channel with depths greater than 50 ft traverses the bay for more than 60 per-

cent of its length. The maximum depth of 175 ft is located in the upper bay

near Bloody Point, Kent Island, Maryland.

53. Like many coastal plain estuaries, the bay is irregular in shape

r*L varying in width from 4 miles, between Annapolis and Kent Island, to 30 miles,

in the middle bay off the Potomac River. More than 64,000 square miles of

drainage area empty into the bay through more than 50 different tributary

systems. Five major western shore rivers (Susquehanna, Potomac, James, York,

and Rappahannock) provide approximately 90 percent of the annual freshwater

discharge.

Selection of Boundary Points

54. A basic input to the grid generation code is the specification of

the (x,y) coordinates of the boundary points (Figure 5). The degree of reso-

lution of boundary features will, of course, depend upon the number of .

and r lines selected in the transformed rectangular plane as well as the

location of the boundary points. The actual boundary points selected for use

in WESCORA are listed in Appendix B. Figure 5 is presented only for demon-

stration purposes. The rectangular ( ,n) plane corresponding to the actual

boundary points listed in Appendix B is shown in Figure 6.

25
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Grid Generation Using Actual Depths

:%.

55. Initially, depth points were randomly selected, with approximately

800 points specified to cover the navigation channel as well as the nonchannel

areas. Depths ranging from 0 on the boundary to a maximum of 156 ft were in-

put. All of the interpolation schemes previously discussed were tried with

little success in forcing coordinate lines to closely follow the navigation

channel. The grid presented in Figure 7, which resulted from a 3-point in-

verse power interpolation with an exponent of 4 (Equation 19), does show some

adaption to the channel. However, the depth field interpolated on the initial

grid presented in Figure 8 evidently did not contain sufficient gradients to

force adequate adaption to the natural channel. The concentration evident in

this initial grid is caused by the boundary point distribution through the

control functions in the original WESCOR formulation as mentioned in para-

graph 6. Another example is the grid shown in Figure 9, which was computed

using 2-point inverse power interpolation with the exponent set to be 10. The

grid seems to be trying to adapt to two channels. The reason is not apparent.

Grid Generation Using Hypothetical Depths

56. The next effort involved using an adjusted depth field in which the

natural channel was assumed to be 100 ft deep, with zero depths specified out

of the channel. In addition, as illustrated in Figure 10, the depths were

read in as points of cross sections that were constructed approximately per-

pendicular to the center line of the channel. A total of approximately

100 depth points, with a value of either 0 or 100, were input.

57. With the hypothetical depth field, attraction of grid points to the

navigation channel was achieved for most of the interpolation schemes. The
4-point bilinear with smoothing and the 3-point bilinear with no smoothing "__'

* schemes resulted In unstable computations. However, the 3-point bilinear

scheme with smoothing was stable and the resulting coordinate system, pre-

sented in Figure 11, rontains good clustering of grid points in the channel.

Figures 12 and 13 show grids generated using the 2-point inverse power inter-

polation with exponents of 4 and 10, respectively. Little impact as a result

of the change in the exponent is observed. The grid presented in Figure 14

resulted from using 4-point inverse power interpolation with an exponent of 4,

26
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while that in Figure 15 used a Taylor series interpolation with 2 points. The

latter is perhaps the most physically appealing of all the grids generated.

Influence of Weighting Factors

58. All of the grids presented up to now were generated with a weight-

ing factor of 1.0 for each of the three contributing integrals in Equation 10.

To demonstrate the relative effect of each factor, Figures 16 and 17 are pre-

sented. In Figure 16, the concentration weight factor has been set to 0.0,

* with the smoothness and orthogonality factors retaining a value of 1.0. As

expected, no attraction to the navigation channel occurs and a relatively

smooth grid is generated. This occurs even though the initial grid, shown in

Figure 8, had concentration based upon boundary point distribution. The

variational formulation with only smoothness and orthogonality smooth out the

initial concentration. In Figure 17, both the concentration factor and the

orthogonality factor are set to 0.0, while keeping the smoothness factor at

* 1.0. This is the grid that would be computed by the WESCOR code with zero

* values for the control functions in Equation 11. An interesting observation

is that the grid generated with no enhancement of orthogonality, i.e., Fig-

ure 17, would probably be more appropriate for flow computations than the one

in which the orthogonality condition is enforced, i.e., Figure 16, because

orthogonality is achieved at the expense of smoothness.

Practical Aspects

59. Obviously, not only the numerical grid, in which grid lines follow

navigation channels, but also the water depths associated with each computa-

* tional cell are desired as output from the grid generator. The numerical

hydrodynamic-transport model to be subsequently employed would then use this

output in the computation of flow and constituent fields. However, use of the

actual depth field, input as a random distribution, did not result in suffi-

cient depth gradients to force grid lines to adequately follow the natural

* navigation channel in Chesapeake Bay. As a result, a hypothetical depth field

was created, with large depths in the channel and zero values elsewhere. In

this case, the final depth associated with each computational cell is meaning-

less. It should be realized that as far as grid generation is concerned the

27



use of either real or adjusted depths is immaterial, although real depths are I'

required on the final grid upon which flow computations are to be made. The

solution is to use the adjusted depth field to compute the grid and then to

interpolate from the actual depth field for the water depth to be associated

with each cell of the final grid.

60. Based upon the Chesapeake Bay grid generation, it appears that the

Taylor series interpolation with 2 points yields perhaps the "best-looking"

adaptive grid. Evidently the gradients in the hypothetical field are better

maintained after interpolation onto the initial grid, although the actual
values are in error. Table 1 presents the depth limits resulting from dif-

ferent interpolation schemes, along with the limits of the interpolated depth

field after smoothing. Based upon the results shown in Table 1, it would

appear that interpolation of the actual depth field onto the final adaptive

grid should perhaps be based upon the inverse power interpolation with no

smoothing.
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PART VI: SUMMARY AND CONCLUSIONS

Summary

61. As a result of the need for generating boundary-fitted numerical

grids for use with finite difference models in coastal and estuarine areas, a

numerical grid generation code called WESCORA has been developed as an exten-

sion of an earlier code, called WESCOR. Grid generation is based upon adap-

tive grid techniques that have been developed for dynamic grid adaption. How-

ever, for the purpose of computing free-surface hydrodynamics and transport in

coastal and estuarine areas these techniques have been employed here only for

the generation of the initial grid and no time-dependence is considered.

62. Two adaptive mechanisms are contained in WESCORA; namely, adaption

based upon a variational formulation and adaption based upon a control func-

tion formulation. In both cases, adaption to water depths is used to force

grid lines to follow navigation channels. Preliminary testing of the two

approaches has shown that the variational formulation is apparently the more

reliable.

63. In the variational approach, a functional that consists of the sum

" of three integrals involving the physical coordinates is minimized over the

grid. The first of the integrals controls grid point concentration while the

"" other two control grid smoothness and skewness of the grid lines. By weighing

the importance of the three integrals, either grid point concentration,

smoothness, or orthogonality can be emphasized.

Conclusions

64. Preliminary testing of WESCORA on Chesapeake Bay has resulted in

the general conclusion that numerical grids can be generated such that grid

points cluster in navigation channels. However, unless there are large dif-

ferences between the channel and nonchannel depths, a fictional depth field

may be required to achieve adequate adaption. In this case, the actual J1,pth

field should be interpolated onto the final adaptive grid to provide rela-

tively accurate water depths to be ass3ociated witn each computational ,e'Ll V

the grid. Particular conclasions concerning usage of the code are offered

below.

29
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a. The inverse power interpolation is bounded by the extreme
values of the depth values and is the smoothest interpola- -
tion. It may give, however, a depth distribution that is
smoother than intended. A value of 2 to 4 for the exponent
involved here is probably appropriate.

b. There is probably no real reliable Advantage to using large
numbers of points in the interpolation, three points being most
reasonable.

c. The features provided requiring a convex polygon of depth
points in the interpolation and smoothing after the interpola-
tion should be used.

d. Multiple groups of interpolation points should be used with the
Taylor series and bilinear interpolations, four groups being
reasonable.

e. For grid generation, the bilinear interpolation with three
points or the Taylor series interpolation with two points,
should be good choices in most casos. The inverse power in-
terpolation with no smoothing should provide relatively
accurate depths on the final grid.

f. Neumann boundary conditions (orthogonality at the boundary)
should be used on boundary segments on which the depth
varies. rhis feature requires that the boundary segment in
question be straight.

g. The variational adaptive mechanism is the more reliable. The

values of the smoothing and orthogonality parameters should be
kept equal and not more than an order of magnitude smaller than
the concentration parameter in most cases.

h. If the randomly distributed depth field does not yield depth
Lyradients sufficient to cause good adaption to navigation
channels, a hypothetical field such a. the one used in the
Ches apeake Bay example should be input. In general, cross
sections should be aligned perpendicular to the channel.

• ".." - .
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DEPTH POINTS USED IN EVALUATIONS OF DERIVATIVES
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Figure 1 . Taylor series expansion about nearest depth point

DEPTH POINT

Figure- P. :31linear interpolation within triangle of djepth points
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Figure 7. Depth-adaptive grid using inverse power interpolation
with three points and an exponent of J4

Figure 8.Initial grid

Figure 9. Depth-'adaptive grid using inverse power interpolationl
with two points and an exponent of 10



Figure 10. Demonstration of depths input from cross sections

Figure 11. Depth-adaptive grid using bilinear interpolation
with three points

Figure 12. Depth-adapt.1ve grid uo ;rg inverse power lnterpol-itlon--
with- two points and -in exponent of LIJ
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Figure 13. Depth-adaptive grid using inverse power interpolation
with tou points and an exponent of 10

Figure 15. Depth-adaptive grid using inverserpoer interpolation

with two points
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Table 1 4

Interpolated Depth Limits

Interpolation Scheme Actual Limits Interpolated Limits Smoothed Limits

Bilinear with 3 points 0-156 0-120 0- 86

Bilinear with 3 points 0-100 0-100 0- 98

Inverse power with
4I points, exponent = 40-156 0-137 0-100

Inverse power with -

4 points, exponent =2 0-100 0-100 0- 95

Inverse power with
3 points, exponent 40-156 0-137 0-100

Inverse power with
*3 points, exponent 40-100 0-100 0-100

Taylor series with
2 points 0-156 0-139 1- 96

* Taylor series with
2 points 0-100 0-449 1-296

Taylor series with
*3 points 0-156 0-204 ~ 1-126
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C CZ$$ZZZZSZZSZZZlZSZSW E S C 0 R A $ZZZZ$$IZZzZ$Z$ZSZ"'-
c

C
C 8-D 2 IOUNDARY-FITTED COORDINATE SYSTEM CODE ( DEPTH-ADAPTIVE :
C MISSISSIPPI STATE UNIUERSITY 1982 REVISED 198S
C
C U.S. ARMY ENGINEER UATERWAYS EXPERIMENT STATION -
C UICKSBURG, MISSISSIPPI
C

C
C ******38*88 SLIT-SLAB CONFIGURATION S*2*

C h$ZU ATTRACTION TO COORDINATE LINES/POINTS AND TO SPACE LINES/POINTS.
C a$38 CONTROL FUNCTIONS ALSO INTERPOLATED FROM BOUNDARY POINT DISTRIBUTION
C:2
C $ S8 ADAPTIVE ON DEPTH DISTRIBUTION.
C .
C S*S* CAN BE ORTHOGONAL ON STRAIGHT BOUNDARY SEGMENTS.
c .

C ****I***i INPUT INSTRUCTIONS a ."

C I
C US CARDS(Q) I LABEL - FORMAT(I0A8)
c CI
C s LABEL - TUO 80 CHARACTER CARDS. (,LANK CARDS IF NO LABEL)
c Cx

*C StS CARD IMAXJMAXDDYITER,ISLIT.IBNDRYIDISK,IUIIR.IWIMTL,
C 2 [UFINNRENNEUINT - FORMATC1I2S)

C s IMAX - NUMBER OF XI POINTS.
C 2
C $ JMAX - NUMBER OF ETA POINTS.

c 3 NIDY - TOTAL NUMBER OF SLAB SIDES AND SLITS IN THE FIELD.c a <,
C * ITEA - MAXIMUM NUMBER OF ITERATIONS ALLOWED.

c , ISLIT - -1 SLAB SIDES OR SLITS READ FROM CARDS.
c t X., - FORMAT(2F10.0) ONE PoINT PER CARD.
C 8 -2 SLAB SIDES OR SLITS READ FROM FILE 10.
c S X.Y - FORMAT(2F10.0) D ONE POINT PER CARD.c s :::--.

C t (NOTEI HORIZONTAL SLITS ARE READ CLOCKJISE FROM RIGHT END.)
C * VERTICAL SLITS ARE COUMTER-CLOCKUISE FROM TCP. )
C * ( SLAB SIDES MAY BE READ IN EITHER DIRECTION.
C t
C $ IDNDRY - "0 OUTER BOUNDARY CALCULATED INTERNALLY AS CIRCLE.
C 3 al OUTER BOUNDARY READ FROM CARDS.
c 2 X,Y - FORAT(2F10.0) , ONE POINT PER CARD.
C * =2 OUTER BOUNDARY READ FROM FILE 10.
C s X,Y - FORMAT(?F14.9) , OE POINT PER CARD. .4..,

C s --1 OUTER BOUNDARY READ IN SEGMENTS AS SLAB SIDES.

C I (NOTEI FOR IINDRY * I OR 2 - OUrER BOUMDARY IS READ CLCCKUISE
C 2 FROM POINT (INFXI, INVETA).

A3
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C ( 'OUTER SO.INDARY MEANS ENTIRE BOUNDARY OF TRANSFORMED
-' C ( REGION IF NREN-e. IF NREN IS NO ZERO, THEN OUTER

C 2 IOU"DARY IS THE TOP OF THE TRANSFORMED REGION AND
C s INNER BOUNDARY IS THE BOTTOM.
C 2
C 9 IDISK - 0 DON'T READ OR URITE SYSTEM FROM OR ON FILE.
C .@1 WRITE SYSTEM Oh FILES 10 & 11. DON'T READ SYSTEM FR
C *-2 UITE SYSTEM ON FILES 1 & 11 . READ SYSTEM FROM F
C -3 READ SYSTEM FRO"I FILE 10 FOR RESTART. DON'T URITE S
C a
C 3 (NOTE: FILE 10 IS RESTART FILE FOR CONTNUATION OF ITERATION.)
C ( FILE 11 IS STORAGE FILE FOR FINAL SYSTEM. )
C 2
C * IIR - -0 DON'T PRINT EACH ITERATION ERROR.
C s .1 PRINT EACH ITERATION ERROR.

C t IUINTL - -0 DON'T PRINT INITIAL GUESS.
C 3 -1 PRINT INITIAL GUESS.
CS
C 2 lUFIN - ZERO SUPPRESSES PRINT OF FINAL VALUES.
c S
C 2 NREN - NON-ZERO USES RE-ENTRANT BOUNDARY ON LEFT I RIGHT SIDE
C OF TRANSFORMED REGION, UITH OUTER BOUNDARY ON TOP
C x AND INN1ER BOUNDARY ON BOTTOM.
C 2
C INNER BOUNDARY IS READ AS FOLLOWS BEFORE READING OUTER
C s -1 INNER BOUNDARY READ FROM CARDS.
C s X,Y - FORMAT(2FI.0) , ONE POINT PER CARD.
C s -2 INNER BOUNDARY READ FROM FILE 10.
C I X,Y - FORMAT(2FI@.0) , ONE POINT PER CARD.
CS2
C s (NOTES SLITS AND/OR SLABS MAY ALSO BE PRESENT.)
C s
C £ NEUINT - I SUPPRESSES NEUMANN4 BOUNDARY CONDITIONS FOR
C s INITIAL GRID.

C *22 CARDS(NIDY) LlI,LBZ,LB3,LTYPE,NEUBOD - rORMAT(SIS)

C I L3I,LB2 - FIRST AND LAST INDICES OF SLAB SIDE OR SLIT ENDS.
C 2 (L82 MAY BE LESS THAN LBI FOR SLAB SIDE. INPUT IS FRO
C si
C i L33 - INDEX OF LINE ON WHICH SLAB SIDE OR SLIT IS LOCATED.
Cs
C I LTYPE - SLAB SIDE OR SLIT TYPE (1 FOR HORIZONTAL, 2 FOR VERTICA
C t
C s (NEGATIUE INDICATES SLAB SIDE, RATHER THAN SLIT.)
C 2 (SUBTRACT 16 FOR OUTER BOUNDARY SEGMENT.
C t (I.E., -11 IS HORIZONTAL OUTER BOUNDARY SEGMENT,)
C 3 ( -12 IS VERTICAL OUTER BOUNDARY SEGMENT.
c i
C * NEUBOD - I MEANS NEUMANN BOUNDARY CONDITION.
C I 0 MEANS DIRICHLET CONDITION.
C l
C s3s CARD NEUOUT(4) - FORMAT(415)

C 2 NELIOUT - I MEANS NEURMNN BOUNDARY CONDITIONS ON OUTER BOUNDARY.
C s (OUTER BOUNDARY MADE OF SLAB SIDES IS CONTROLLED
C s BY NEUBOD INSTEAD OF NEUOUT.)
C 2 0 MEANS DIRICHLET CONDITIONS.

-PltJ

-~~~~~~~..............,...-........::...-...-... ... . .. .. -:*-.....-. *.- .. ... ,. .. . .. . ..... .... . ... . -



C 8 ( LEFT
C $ (2) 8 RIGHT
C ( 3) £ BOTTOM
C s (4) z TOP
C &
C Us CARD NDEP.NDOUTNDOPNDEPF.NINP.NCOM.NTESNSMO - FORMAT(SIS)
C s

C S NDEP - NUMBER OF DEPTH POINTS.
C 2 ( ZERO FOR NON-ADAPTIVE SYSTEM )
C s ,'~

C s NDOUT - NON-ZERO ADDS OUTER BOUNDARY POINTS TO DEPTH POINT , .
C t LIST, UITH ZERO DEPTH.
C s C THIS SHOULD BE USED UNLESS THE INPUT DEPTH POINTS
C 9 EXTEND TO OR BEYOND THE OUTER BOUNDARY. IhPUT DEPTH
C : POIN4TS THAT ARE COINCIDENT WITH OUTER BOUNDARY POINTS
C 8 WILL RETAIN THE INPUT DEPTH EVEN UHEN THIS FEATURE
C I IS USED. )
C Ct
C 9 NDOP - FRINTS DEPTH POINTS.
CSt
C s NDEPF - NON-ZERO READS DEPTH POINTS FROM FILE 12.

C 9f lNP - INTERPOLATION TYPE 1 0 ) HARIONIC - ALL
C 13 ) BILINEAR - 3 POINTS
C S 14 ) BILINEAR - 4 POINTS
C 2 ) 2-POINT TAYLOR SERIES
C S 3 ) 3-POINT TAYLOR SERIES
C S 4 ) 4-POINT TAYLOR SERIES
C S ) S-POINT TAYLOR SERIES
CS2 -2 ) HARMONIC - 2 POINTS
C $ -3 ) HARMONIC - 3 POINTS
C 8 -4 ) HARMONIC - 4 POINTS
C 1 -S > HARMONIC - S POINTS
CSI
C 9 1 BEST ARE 13 2 , 3 , -2 , -3
CS8
C a NCOM - NUMBER OF INTERPOLATION POINT SETS FOR TAYLOR. C 4
C 9 POUER FOR HARMONIC. 2 2 )
C "
C a NTES - NON-ZERO REQUIRES SUCCEEDING POINTS TO SURROUND
C 9 INTERPOLATION POINT. ( USE THIS
C "
C S NSMO - I SUPPRESSES DEPTH SMOOTHING. ( DON'T SUPPRESS
C s
C 532 CARD R(1),R(2),R(3),YINFIN,AINFI.XOINFYOINFINFXI.IMFETA
C S - FORMAT(7FIS.O.2IS)
C s
C S R(I) -SOR ACCELERATION PARAMETER FOR INITIAL GRID.
C t (ZERO VALUE CAUSES UARIABLE ACCELERATION PARAMETER)
C 9 (FIELD TO BE CALCULATED IN'ERNALLY.
C S (NEGATIVE OALUE GIUES ALGEBRAIC SYSTEM)
C CS
C a R() - ALLOMABLE X ITERATION ERROR.
C x
C R(3) - ALLOWABLE Y ITERATION ERROR.
C 2
C 9 YINFIN - RADIUS OF C'RCLLAR OUTER BOUNDARY.
C 9
C S AIMFIN - ANGLE OF FIRST POINT 04 CICULAR OUTER BOUNDARY (DEGRE

A 6

oU

Il



S,. C 2 (COUNTER-CLOCK FROM POSITIVE X-AXIS. )

S C I XOINF•YOINF - CENTER OF CIRCULAR OUTER BOUNDARY.
C -
C I INFXIINETA - INDICES OF FIRST POINT ON CIRCLLAR 0TER BOUNDAR

. C I (NOTE I LAST 7 OF THESE PARAMETERS ARE IRRELEVANT IF OUTER R

. C I
C 233 CARD I ACCLUFACI,SFAC,OFACI - FORP'AT(4FI0.0) . -

C 3 ( OMIT IF NDEP-,
C I .

C i ACCL - SOR ACCELERATION PARAMETER FOR ADAPTIVE GRID. 1.8
C 3 "'

C S IFACI -CONCENTRATION FACTOR. ( *.-.@ ) ".0-1.
C I ( POSITIVE VALJE FOR VARIATIONAL ADAPTION
C I ( NEGATIVE VALUE FOR CONTROL FUNCTION ADAPTION )
C I ( SFAC L OFACI ARE IRRELEVANT IN UFACI IS NEGATIVE)
C CI
C * SFAC - SMOOTHNESS FACTOR. ( O.0-1.0 "
cI
C 2 OFACI - ORTHOGONALITY FACTOR. ( 0.0-1.0
C 9
C I ...................................................................
CI
C *I IF BODIES AND/OR OUTER BOUNDARY ARE READ FROM CARDS, SUCH CARDS

* C It FOLLOW NEXT UNLESS A RESTART IS USED.
C as
C IS SLITS AND/OR SLAB SIDES ARE READ FIRST, THEN OUTER BOUNDARY IS READ.
C I (THESE RULES APPLY FOR READING FROM FILE 10 AS WELL AS FROM CARDS.)
C It
C ....................................................................
C I
C S£ IF DEPTH POINTS ARE READ FROM CARDS, SUCH CARDS FOLLOU NEXT
C 2£ IN THE FOLLOWING FORMAT. IF DEP-0 NO DEPTH POINTS ARE READ.
C St OMIT IF A RESTART IS USED, UNLESS IT IS FROM A CONVERGED INITIAL
C 23 GRID GENERATED WITHOUT READING DEPTH POINTS.
C I
C 2................................................................
C 2
C SI3 CARDS(NDEP) XDEP,YDEP,DEP - FORMAT(3FI0.0)
C .
C 2 XDEPYDEP - XY COORDINATES CF DEPTH POINT.
C 2
C 2 DEP - DEPTH.

C CI.................................................................
C I
c I
C S3 IF NO COORDINATE ATTRACTION IS TO BE USED, FOLLOW THESE CARDS
C *2 WITH FIVE BLANK CARDS. IF ATTRACTION IS TO BE USED. USE Tb4E FOLLOUING
C It INPUT RATHER THAN THE BLANK CARDS:
C - .
C It INPUT FOR COORDINATE SYSTEM CONTROL ! USE FOJR SETS, ONE FOR
C *3 XI-LINE ATTRACTION T0 COORDINATE LINES/POINTS, OE FOR ETA-LINE ATTRAC
C 23 TO COORDINATE LINES/POINTS, ONE FOR XI-LINE ATTRACTION O SPACE LINES/
C 33 AND ONE FOR ETA-LINE ATTRACTION TO SPACE LINES/PO:NTS.
C IS ANY SET NOT UANTED IS REPLACED BY ONE BLANK CARD.

c* *Ic o .
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C 8"
C s THE FOLLOWING, MARKED WITH 8. IS FOR ATTRACTION TO COORDINATE LINES/PC
C 88
C *888 CARD I ATYPITYP,'ILNNPTDEC,AIPFAC - FORMAT(AS,I2,215,FI0.)
C *I
C 8t ATYP - TYPE OF ATTRACTION. (XI FOR XI-LINE ATTRACTION,
C 8$ ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED.C $$"""8

C S8 ITYP - ZERO GIUES ATTRACTION ON BOTH SIDES.
C 88 NON-ZERO GIVES ATTRACTION ON UPPER SIDE AND
C 85 REPULSION ON LOWER SIDE.

C 88 NLN - NUMBER OF ATTRACTION LINES.
C I8
C S8 NPT - NUMBER OF ATTRACTION POINTS.

*C 88
C 88 DEC - NON-ZERO DEC USES DEC FOR DECAY FACTOR.
C t8
C It AMPFAC - NON-ZERO AMPFAC MULTIPLIES ALL AMPLITUDES BY AMPFAC.
C as
C $$IS CARDS(NLN) JLNALNDLN - FORMAT(SXI5,2FI*.8)
C 88 (OMIT IF HILN IS ZERO)
C 88
C as JLN - ATTRACTION LINE INDEX.
C *I
C x8 ALN - AMPLITUDE (NEGATIVE REPELS) FOR LIME ATTRACTION.
C 88
C S DLN - DECAY FACTOR FOR LINE ATTRACTION.
C 88
C 8888 CARDS(NPT) s IPTJPT.APTDPT - FORMIAT(a15,aF10.e)
C 8s (OMIT IF NPT IS ZERO)
C sY
C 8* IPToJPT - ATTRACTION POINT INDICES.C I88

C 88 APT - AMPLITUDE (NEGATIVE REPELS) FOR POINT ATTRACTION.
C s8
C s DPT - DECAY FACTOR FOR POINT ATTRACTION.

*C *IC 8S888ll 888l188I1lll8ll 88ltt 8888l8t8l8ltlllllllll18lll8l88S888ll8ll
C 88

C SO$ THE FOLLOWING, MARKED WITH S, IS FOR ATTRACTION TO SPACE LINES/POINTS
C as
C i88 THE FOLLOWING CARDS ARE FOR ATTRACTION TO LINES AND/OR POIN"S
C 8888 DEFINED BY X,Y COORDINATES. IF NLM IS NOT ZERO, THEN MLN
C 8188 OF THE CARDS GIVING NP MUST APPEAR. EACH' OF THESE CARDS IS
C 8$81 FOLLOWED DY NP OF THE CARDS GIVING XPT, ETC. IF NPT IS HOT
C 8888 ZERO, THEN NPT OF THE CARDS GIVING XPT. ETC. MUST FOLLO
C 888s THE LAST GROUP OF THESE CARDS.
C 8882 ANY SET NOT UANTED IS REPLACED BY ONE BLANK CARD.
C Ss
C 8888 CARD : ATYP,ITYPNLMNPT,DEC,AMPFAC - FORMAT(AB.I2E.IS.2FIO.O)
C Ss
C as ATYP - TYPE OF ATTRACTION. (XI FOR XI-LINE ATTRACTION,
C so ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED.c 99:::'
C 8s ITYP - ZERO GIUES ATTRACTIO0 ON BOTH SIDES.
C *6 NON-ZERO GIVES ATTRACTION ON UPPER SIDE AND
C S REPULSION OI LOWER SIDE. "'
C ts
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C Is NLN - MU1DER OF ATTRACTION LINES.
C Is
C 29 NPT - mNUMER OF ATTRACTION POINTS.
C Is (NOT INCLUDING POINTS ON ATTRACTION LINES)
c ,,
C Is DEC - NON-ZERO DEC USES DEC FOR DECAY FACTOR.
C 21 .._ _-?
C as AMPFAC - NON-ZERO AVPFAC MULTIPLIES ALL AMPLITUDES BY AMPFAC.

C 2528 CARD M IP - FORMAT(15)
C 2S
C 21 NP - P UMBER OF POINTS ON THIS ATTRACTION LINE.
C IS
C 2122 CARDS XPTYPT,APTDPT,UECI,vEC2 - FORMAT(6FIS.0)
C ,1

C 21 XPT,YPT - COORDINATES OF ATTRACTION POINT OR
C 21 POINT ON ATTRACTION LINE.
C 2S
C 21 APT - ATTRACTION AMPLITUDE (NEGATIVE REPELS).
C 21
C tI DPT - DECAY FACTOR.c tS .-.:
C tI VECIVEC2 - X,Y COMPONENTS OF UNIT VECTOR tORIMAL TO
c ts ATTRACTION DIRECTION FOR POINT ATTRACTION.
C Is (CALCULATED INTERNALLY FOR LINE ATTRACTION.)
C I
C s

* C 2......................................................................
C 2
C 522 THE LAST CCORDINATE SYSTEM CONTROL CARD IS THE FOLLOWING CARD

C 2t2 CARD IFACIRIT,EFAC - FORMAT(2IS.FIS.4)
C t
C 2 (CAN BE USED TO AID CONVERGENCE BY CONVERGING FIELD
C t (WITH LESS ATTRACTION FIRST AND USING THIS RESULT
C 2 (AS THE INITIAL GUESS FOR STRONGER ATTRACTION.
C I (BLANK CARD MUST BE INPUT IF THIS FEATURE IS NOT USED.
C 2 (STANDARD IS TO NOT USE THIS FEATURE , BUT ITS USE MAY)
C t (BE NECESSARY UITH STRONG ATTRACTION.
c:
C * IFAC - NUMBER OF STEPS IN ADDITION OF INHOMOGENEOUS TERM.
C S DOUBLES INHOMOGEMEOUS TERM AT EACH STEP.
C .
C 2 (ZERO CONVERGES WITH FULL ATTRACTION.
C s (1.0 CONVERGES WITH NO ATTRACTION FIRST, THEN
C 8 (WITH FULL ATTRACTION. 2.0 CONVERGES WITH NO
C t (ATTRACTION FIRST, THEM WITH HALF, THEN WITH FULL.)
C 9 (INCREASE NUMBER OF STEPS IF DIVERGENCE OCCURS.
c 8
C S IRIT - NON-ZERO VALUE CAUSES INHOROGENEOUS TERM TO BE PRINTED.
c C-
C * EFAC - MULTIPLE OF CONVERGENCE CRITER'CM -0 BE USED FOR
C 2 INTERMEDIATE CONVERGENCE BETWEEN ADDITIONS OF
C x INHOMOGEMEOUS TERM. :TYPICALLY 10.0
C S
C 222 CARD I LDEP,LDOUT,LDOP,LDEPF,LINPLCCMLTESLSMO - rORMAT(BIS)

C S THIS CARD ALLOWS A SEPARATE SET OF DEPT+4 POINTS -0 BE INPUT
C TO BE USED FOR INTERPOLATION IF DEPTHS ON T4WV FINAL GRID -0

o •° o
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C 2 K OUTPUT ALONG UITH THE GRID. THIS IS USEFUL ir THE CASE
C a WHERE ADJUSTED DEPTHS UERE USED FOR THE ADAPTION WHILE ACTUAL
C * DEPTHS ARE DESIRED FOR USE UITH THE GRID IN F'OW CODES.
C 2 INPUT A #LANK CARD HERE IF THE FIRST SET OF DEPTH POITS IS
C x TO BE USED FOR THE OUTPUT DEPTHS. IN EITHER CASE THE OUTPUT
C 2 DEPTHS ARE LOCATED AT CELL CENTERS BY AVERAGI4G THE FOUR
c * SURROUNDING GRID POINT VALUES. THE (IJ) OUTPUT DEPTH IS FOR
C I THE CELL WITH (1,J) AT THE LOVER-LEFT CORNER. ) ,.c 2 -
C 2 LDEP - MURDER OF DEPTH POINTS.
C a C ZERO FOR NOM-ADAPTIVE SYSTEI )
C 2
C I LDOUT - NON-ZERO ADDS OUTER BOUNDARY POINTS TO DEPTH POINT
C * LIST, WITH ZERO DEPTH.
C s ( THIS SHOULD BE USED UNLESS THE INPUT DEPTH POINTS
C t EXTEND TO OR BEYOND THE OUTER BOUNDARY. INPUT DEPTH .. '.

* C I POINTS THAT ARE COINCIDENT VITH OUTER BOUNDARY POINTS
C * WILL RETAIN THE INPUT DEPTH EVEN WHEN THIS FEATURE
C a IS USED.
C a
C t LDOP - I PRINTS DEPTH POINTS.

C 2 LDEPF - NOM-ZERO READS DEPTH POINTS FROM FILE 16.
C a
C S LINP - INTERPOLATION TYPE 0 9 ) HARMONIC - ALL
C a 13 ) BILINEAR 3 POINTS
C * 14 > BILINEAR - 4 POINTS
C s 2 ) 2-POINT TAYLOR SERIES
C a 3 ) 3-POINT TAYLOR SERIES
C x 4 ) 4-POINT TAYLOR SERIES
C 2 S ) S-POINT TAYLCR SERIES
C 9 -e > HARMIONIC 2 POINTS
C C -3 ) HAMRNONIC -3 POINvS
C C -4 ) HAROMIC 4 POIN'S
C I -S) HARMONIC 5 POINTS
C a
C BEST ARE 13 ,2. 3 , -2 , -3)
C a
C S LCOM - NUMBER OF INTERPOLATION POINT SETS FOR TAYLOR. ( 4
C S POWER FOR HARMONIC. ( ,
C I
C S LTES - NON-ZERO REQUIRES SUCCEEDING POINTS TO SURROUND
C S INTERPOLATION POINT. ( USE THIS

*CS
C t LSMO - I SUPPRESSES DEPTH S100THING.
C CS
C 22 CARDS(LDEP) I XDEPYDEP,DEP - FOR,AT(3FIO.)-
c Cs
C I XDEP,YDEP - XY COORDINATES OF DEPTH POINT.
C s
C DEP - DEPTH.
CS
C au.hhuu

C * MASS STORAGE FILES
C s
C S RESTART FILE - READ FROP FILE 14 W WRITTEN ON FILE 15
C s WFCTART CAN BE FROM PAR'IALLY OR FULLY CONVERGED
C 9 INITIAL OR ADAPTIVE GRID.
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c C (14) RXI,RETA,~WIL,U.,UFACOCAC.DEPXDEP,YDEP
C 2 (14) X,Y.LSLITLADEL.IM9AX,JMAX
c C (14) N39DY.NLJLB.L3D2,L3LTPE,LPTX..,XU.VLYU,
C DIMI,DIMJ,DIMP,DIM3,LACC.LJACCNEUOUTNEUBOD,ITI

CtCOORDINATE SYSTEM STORAGE FILE - FILE 112

C 9

C 1 11 (()X(J,J),I'1.IMAX),Jv1,JMiAX)
c 2 (11)(YJ,-,MX.fJA)
c 1 (11) ( (U(J,J),.1-lpqAX),J-1,JIAX)
C s (OMITTED IF HDEP-S)
C a (11) #4DY,MUM3.LB1,1DB2,L83,LThYPE,LPT,XLoXUYL,YU,
C 2 DIMI,DIMJ,DIMP,DIMB
C I
C 11331111131111*IRIZIIIIlIIIIIUIII

c.

c . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



APPENDIX B: CYBERNET JOB STREAMS AND EXAMPLE INPUT
FOR CHESAPEAKE BAY



The following files are defined:
1, *%' *

i

BAYRI = CDC run stream file.

BAYDI = File containing (x,y) location and the value of depth points.

One depth point per line.

BAYI = File containing (x,y) location of boundary points. One point

per line.

RPLOTA = CDC plot run stream.

CSPLOT = Plot code source.

WESCORA = Grid code source.

BA YR 1
'FJOI

JFT1XXX(TIO, C NM3 .P4)
USER. .01.
COMCaE.
SBULII!.Ab-77777.
GeET. OWESCOR.
GET.TAPEI2%1 A'D1.
GET. TAPE 16'3AY02.
GET. TAPE 1@.IAYI.
OWE SC ON
REPLACE .OUTPUT.0J?.
RtEPLACE. TWPIS-NESTANT.
REPLACE. TAPE I I 'SO~L. .-

DAVFILE.DAY.
REPLACE. DAY.
EXIT.
EPLACE. OUTPUTOUT.
DAYFILEDAY.
REPLACE. DAY.

ADAPTIVE
CHESAPEAKE 3AY

76 22 7 1 S 2 -1 1 1 0 a
1 39 1 -11
1 3 39 -12

39 37 3 -11
3 4 37 -12

37 39 4 -11
4 6 39 -12

39 37 6 -11
6 7 37 -12

37 46 7 -11
7 S 46 -12

46 41 5 -11
S 7 43 -12

43 SO 7 -11
7 5 so -12

so 52 5 -11
S 7 SE -12

52 54 7 -11
7 S 54 -12

S4 S?7 S -11
S 7 S7 -12

S7 66 7 -11
7 S 66 -12

66 68 S -11
5 7 63 -12
68 76 7 -11

7 11 76 -12 0
76 72 is -11

.A- 11 12 72 -12
72 73 12 -11
18 14 73 -1Z
73 64 14 -11
14 16 64 -12
64 I6 , . -11
16 i1 66 -12
66 64 11 -11
3 19 64 -12
64 66 19 -11
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19 31 66 -12
66 60 8I -I1
3.1 23 60 -1P4
60 57 83 -11
8 21 57 -12

S7 39 81 -11
a 1 23 39 -18
39 37 23 -11
23 a1 37 -12 JI.

3? 34 21 -11
21 23 34 -18
34 30 28 -11
28 21 30 -12
30 24 21 -11
2t 23 24 -12
24 21 28 -11
2 21 2i -to. - -21 IS 21 -11 ':-

21 23 IS -12 ... :.
15 12 a8 -11
8 25 12 -12
12 11 a5 -11
2S 2 11 -12
t B 9 2 -11

231 21 a -12
a 4 21 -11

81 23 4 -12
4 1 28 -11 "

28 11 1 -12
11 1-12 1

31 33 6 - I
6 7 33 -2

33 31 7 -1
7 6 31 -8
0 0 0 6

98 1 0 1 13 1 1 1 _.

1.0 e.001 0.01 1 ., 0.0 6.6 6.0 1 £
1.0 1.0 1.0 1.0

93 1 1 13 1 1 .

/EOF

4'..$...-
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BAYDI

4.9 6."
6.0 6.6l
10.0 1.1
10.0 3.0
13.0 3.7
13.0 7.3
16.0 3.1
t6.9 7.2
19.0 9.8
19.6 8.0 .
28.0 10.5 S:
22.0 9.3

as.* 8.3
23.0 10.3
23.0 9.3
31.0 11.4
31.0 10.0 '-
34.0 12.4
34.0 11.4
37.0 13.3
37.0 12.4
40.0 14.2
40.0 13,4
43.0 14.1
43.0 13.S
46.0 13.9
46.0 13.2
49.0 13.
49.0 12.5
S2.0 12.3
S.0, 11.3
5S.0 10.6

J S5.0 10.2
S.S 6.8 10.-'
2.0 8.3 100.0
10.0 8.4 I1.*

, 13.0 8.3 101.0,
16.0 7.6 10,.,
19.0 8.9 10.0

4. 22. 0 9.9100
25.0 9.4 100.0
28.0 10.3 1OO.0•
31.0 10.7 100.0
34.0 11.9 00.4
37.0 12.8 100.0
40.0 13.3 100.0
43.0 13.8 100.0
46.0 13.6 100.0
49.0 12.3 101.0"
52.0 1a. 0 100.9
S5.0 10.4 100.0
4.6 6.8
s.9 6.1
S.0 6.55 100.0
,.5 6.3 1M."
16.7 7.7 100.6
17.6 7.8 100.6
18.4 8.3 100.9
13.6 8.8 100.0 -
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19.4 9.3 10.0
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RP~LOTA

* SMJjXXXCM371e,*r1*#P4)
USER, I ,OE.
CHARGE, I
GET.GCS. OLD-OCSPLOT. OPL'rFIL.
COPYLOLD.0PLT~IL,OCSPLO?. ,AQ.
REWINDOCSPLOT.
GET.TAPEIO-SOLM.
RFL, I40"0.
CALL,qCS I-OCSPLOT,DEV.GCST4I)
REPLACE, TAPESG *PLOTCS.
DAYFILE,DA'.
REPLACEDAV.
EXIT.
REPLACE.OUTPUT -3ADOUT.
DAYFILE.DAY.
REPLA#CE IDAY.
'E OR

/EOF



As can be seen, the day file from both a grid generation run as well as

a run to generate a coordinate plot is stored in a permanent file called DAY,

Printed output from a grid run is stored in a permanent file called OUT. The

following sequence of commands would be issued from a Tektronix terminal to

first run the grid model, then run the plot code, and finally to plot the %

boundary-fitted coordinate system on the screen.

GET,BAYR1 - Creates a local file called BAYRi from the permanent

file BAYRI"

SUBMIT,BAYR1 - Run stream BAYR1 is submitted as a batch job.

XDIT ,DAY,P - Lok at day file to sce if the grid run was successful.

XEDIT,OUTP - Look at the printed output from the grid run.

GET,RPLOTA - Creates a local file called RPLOTA from the permanent

file RPLOTA.

SUBMIT,RPLOTA - Run steam RPLOTA is submitted as a batch job.

XEDIT,DAY,P - Look it day file to see if the plot run was successful.

OLD, PLOTCS ~- Coordinate system is plotted on the screen
LHN I
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